

Configuration and detailed schedule for the proton reference run

M.Solfaroli, M.Giovannozzi, J. Jowett, T.Pieloni, S.Redaelli, M. Schaumann, R.Tomas, J.Wenninger

Introduction

$>$ The pp reference (for ions) run must be made at 2.51 TeV to match the 6.37 TeV ion run
> The experiments would like to accumulate $20-40 \mathrm{pb}^{-1}$ in the little available time (the first week of ions, between Tuesday evening and the end of the week)
> Many bunches - using the 25 ns beam seems the logical choice, number of bunches ~1600 not to over-stress cryo
$>$ Squeeze - combined Ramp\&Squeeze worked smoothly in MD1 we propose to use it and squeeze by a factor 2 (if β^{*} is not too low, optics correction should not be an issue)

Needs

$>$ All settings to be defined - PC, RF, ADT, COLL:
> Combined Ramp\&Squeeze (squeeze between 1 TeV and 2.45 TeV)
> Spool ramp (no RCS.A78B2), with dedicated b3 decay compensation at flat-top (linear scaling used, as guess)
> Tune change \& Collisions beam processes
> Ramp-down (dedicated to ensure magnetic compensation of dynamic effects, thus avoiding re-calibration of FiDel)
$>$ Truncated copy of corrections for the whole cycle
> Dedicated sequence

Matched Pt	Time (s)	IR1/5	IR2	IR8		Name
1	0	11.00	10.00	10.00	R2015a_A11mC11mA10mL10m_INJ	Energy
2	60	11.00	10.00	10.00	R2015a_A11mC11mA10mL10m_INJ	500
3	120	11.00	10.00	10.00	R2015a_A11mC11mA10mL10m_INJ	600
4	200	11.00	10.00	10.00	R2015a_A11mC11mA10mL10m_INJ	1000
5	290	9.00	10.00	9.00	R2015a_A900C900A10m_0.00950L900_0.00934	1200
6	380	7.00	10.00	$\mathbf{8 . 0 0}$	R2015a_A700C700A10m_0.00950L800_0.00919	1300
7	500	4.00	10.00	$\mathbf{7 . 0 0}$	R2015a_A400C400A10m_0.00950L700_0.00906	2450
8	530	$\mathbf{4 . 0 0}$	$\mathbf{1 0 . 0 0}$	$\mathbf{7 . 0 0}$	R2015a_A400C400A10m_0.00950L700_0.00906	2510

2.51 TeV cycle

eseries Chart between 2015-10-29 09:30:00.000 and 2015-10-29 14:00:00.000 (LOCAL_TIME)

Length of cycle phases does not reflect reality (logged data from first commissioning phase)

Parameters

Long Range separations in collision

Courtesy of

 T.PieloniAt IP1\&5 separations are larger than in normal operation and these two Ips are the main contributors
IP2 \& 8 have reduced separations all above 20σ

Parameter	Value
Separation	$\mathbf{2 ~ m m ~ (a l l ~ I P s) ~}$
Crossing angle	$\mathbf{1 7 0}$ urad (1/2 Xing, all IPs) If aperture needed, it can be reduced to $\mathbf{1 4 0}$ urad (in IR1 and IR5)

Commissioning with pilot

> Injected 1 pilot/beam

> Ramped\&Squeezed:

- Few setting mismatches found and fixed
- Typical \mathbf{Q} variations between matched points (large $\left(\sim 2 \times 10^{-2}\right)$ for QHB1 between 9 m and 4 m , already observed during CRS MD)

Typical signature of

Commissioning with pilot...continued

$>$ Coupling measured and corrected
> Q‘ measured (~1.5 unit not-compensated decay observed)
$>$ Orbit cleaning done
$>$ Optics measured
> Q change done
$>$ Beams brought to collisions
$>$ Q' measured (nothing abnormal observed)
> Ramp-down tested
> Q' decay @injection (after special ramp-down) checked - well compensated (powering history dependency excluded from the model)

Orbit, Q, Q' and coupling fed-forwarded offline

Optics @4m (2.51 TeV)

β-beating below 20\%

Corrections calculated and available if requested

LHCB2 2.51 TeV

Courtesy of the optics team

Remaining commissioning breakdown

Nominal cycle

> Cycle with nominal bunches
$>$ Orbit cleaning
> Q \& Q' decay (re)meas @FT
> Collimators alignment:
> @FT:

- TCTs alignment
- IP7 and IP6 check
> @COLL:TCT alignment
Probe cycle (if time left)
> High Q' settings meas all along the cycle

Intensity ramp-up

(1 fill/step), proposal:

- 50 bunches
- 500 bunches
- 1600 bunches

Tentative planning

SHIFT	Cycle n\#	ACTIVITY	TIME REQUIRED
Sometimes in the week-end (Sat N / Sun M)	$1 / 2$	COLL alignment @FT \& @COLL If time left, cycle with pilot for high Q' settings check	6 hours
Tuesday N (switch back to p around 6pm)	3	All LMs @COLL + Ramp-down	
Wednesday M	4	All LMs @FT + Ramp-down	8 hours
Wednesday A	5	Physics fill with 50 bunches	8 hours
Wednesday N	6	Physics fill with 500 bunches	8 hours
Thursday to Sunday	$8 \ldots$	Physics fill with ~ 1600 bunches	

Each LM fill has one entire shift allocated to account for contingencies

Conclusions

$>$ First part of the 2.51 TeV commissioning is done, nothing unexpected found
>1 cycle with nominal bunches is needed to complete commissioning and align collimators + 2 cycles for loss maps
$>$ About 3 cycles needed for intensity ramp-up
$>$ Unless objections from the experiments 25 ns would be preferred over 50 ns (well established operational conditions)

