

Configuration and detailed schedule for the proton reference run

<u>M.Solfaroli</u>, M.Giovannozzi, J. Jowett, T.Pieloni, S.Redaelli, M. Schaumann, R.Tomas, J.Wenninger

Introduction

- The pp reference (for ions) run must be made at 2.51 TeV to match the 6.37 TeV ion run
- The experiments would like to accumulate 20-40 pb⁻¹ in the little available time (the first week of ions, between Tuesday evening and the end of the week)
 - Many bunches using the 25 ns beam seems the logical choice, number of bunches ~1600 not to over-stress cryo
 - Squeeze combined Ramp&Squeeze worked smoothly in MD1 we propose to use it and squeeze by a factor 2 (if β* is not too low, optics correction should not be an issue)

Needs

- > All settings to be defined PC, RF, ADT, COLL:
 - Combined Ramp&Squeeze (squeeze between 1 TeV and 2.45 TeV)
 - Spool ramp (no RCS.A78B2), with dedicated b3 decay
 - compensation at flat-top (linear scaling used, as guess)
 - Tune change & Collisions beam processes
 - Ramp-down (dedicated to ensure magnetic compensation of dynamic effects, thus avoiding re-calibration of FiDel)
 - Truncated copy of corrections for the whole cycle
- Dedicated sequence

Matched Pt	Time (s)	IR1/5	IR2	IR8	Name	Energy
1	0	11.00	10.00	10.00	R2015a_A11mC11mA10mL10m_INJ	450
2	60	11.00	10.00	10.00	R2015a_A11mC11mA10mL10m_INJ	500
3	120	11.00	10.00	10.00	R2015a_A11mC11mA10mL10m_INJ	600
4	200	11.00	10.00	10.00	R2015a_A11mC11mA10mL10m_INJ	1000
5	290	9.00	10.00	9.00	R2015a_A900C900A10m_0.00950L900_0.00934	1200
6	380	7.00	10.00	8.00	R2015a_A700C700A10m_0.00950L800_0.00919	1300
7	500	4.00	10.00	7.00	R2015a_A400C400A10m_0.00950L700_0.00906	2450
8	530	4.00	10.00	7.00	R2015a_A400C400A10m_0.00950L700_0.00906	2510

2.51 TeV cycle

eseries Chart between 2015-10-29 09:30:00.000 and 2015-10-29 14:00:00.000 (LOCAL TIME)

RPHE.UA23.RQD.A12:__MEAS 📫 RPHFC.UL16.RQX.R1:I_MEAS 🗰 RPH6C.UL16.RTQX2.R1:I_MEAS 🗰 RPHH.RR17.RQ4.R1B1:I_MEAS 🗰 RPHH.RR17.RQ4.R1B2:I_MEAS RPTE.UA23.RB.A12:I MEAS

Length of cycle phases does not reflect reality (logged data from first commissioning phase)

Parameters

Long Range separations in collision

Courtesy of T.Pieloni

At IP1&5 separations are larger than in normal operation and these two Ips are the main contributors IP2 & 8 have reduced separations all above 20 σ

Parameter	Value
Separation	2 mm (all IPs)
Crossing angle	170 urad (1/2 Xing, all IPs) If aperture needed, it can be reduced to 140 urad (in IR1 and IR5)

Commissioning with pilot

- Injected 1 pilot/beam
- Ramped&Squeezed:
 - Few setting mismatches found and fixed
 - Typical Q variations between matched points (large (~2x10⁻²) for QHB1 between 9 m and 4 m, already observed during CRS MD)

Commissioning with pilot...continued

- Coupling measured and corrected
- Q' measured (~1.5 unit not-compensated decay observed)
- Orbit cleaning done
- Optics measured
- Q change done
- Beams brought to collisions
- Q' measured (nothing abnormal observed)
- Ramp-down tested
- Q' decay @injection (after special ramp-down) Checked well compensated (powering history dependency excluded from the model)

Orbit, Q, Q' and coupling fed-forwarded offline

Proton reference run

LMC

Optics @4m (2.51 TeV)

Proton reference run

L

LMC

04/11/2015

CÉRN

Courtesy of the optics team

Remaining commissioning breakdown

Nominal cycle

- Cycle with nominal bunches
- Orbit cleaning
- Q & Q' decay (re)meas @FT
- Collimators alignment:
 - ≻ @FT:
 - TCTs alignment
 - IP7 and IP6 check
 - @COLL:TCT alignment

Probe cycle (if time left)

High Q' settings meas all along the cycle

Loss Maps

	@FT	@Coll
Betatron (H&V)	Υ	Υ
Off-p (+&-)	Υ	Υ
Asyncronous dump	Υ	Υ

Intensity ramp-up

- (1 fill/step), proposal:
 - 50 bunches
 - 500 bunches
 - 1600 bunches

Tentative planning

SHIFT	Cycle n#	ACTIVITY	TIME REQUIRED
Sometimes in	1/2	COLL alignment @FT & @COLL	6 hours
the week-end (Sat N / Sun M)		If time left, cycle with pilot for high Q' settings check	2 hours
Tuesday N (switch back to p around 6pm)	3	All LMs @COLL + Ramp-down	8 hours
Wednesday M	4	All LMs @FT + Ramp-down	8 hours
Wednesday A	5	Physics fill with 50 bunches	5 hours
Wednesday N	6	Physics fill with 500 bunches	8 hours
Thursday to Sunday	8	Physics fill with ~1600 bunches	

LMC – Proton reference run

Each LM fill has one entire shift allocated to account for contingencies

Conclusions

- First part of the 2.51 TeV commissioning is done, nothing unexpected found
- 1 cycle with nominal bunches is needed to complete commissioning and align collimators
 + 2 cycles for loss maps
- > About 3 cycles needed for intensity ramp-up
- Unless objections from the experiments 25 ns would be preferred over 50 ns (well established operational conditions)

