Welcome to the ALICE collaboration

Our mission

Welcome to the ALICE website

The ALICE Collaboration has built a dedicated detector to exploit the unique physics potential of nucleus-nucleus collisions at LHC energies. Our aim is to study the physics of strongly interacting matter at the highest energy densities reached so far in the laboratory. In such condition, an extreme phase of matter - called the quark-gluon plasma - is formed. Our universe is thought to have been in such a primordial state for the first few millionths of a second after the Big Bang. The properties of such a phase are key issues for Quantum Chromo Dynamics, the understanding of confinement-deconfinement and chiral phase transitions. For this purpose, we are carrying out a comprehensive study of the hadrons, electrons, muons and photons produced in the collisions of heavy nuclei. ALICE is also studying proton-proton and proton-nucleus collisions both as a comparison with nucleus-nucleus collisions and in their own right.

Diversity and Inclusivity in ALICE

The ALICE Collaboration embraces and values the diversity of its team members and colleagues. We are committed to fostering an inclusive environment for all people regardless of their nationality/culture, profession, age/generation, family situation and gender, as well as individual differences such as but not limited to ethnic origin, sexual orientation, belief, disability, or opinions provided that they are consistent with the Organization’s values.


Latest ALICE Submission

Non-linear flow modes of identified particles in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV
The $p_{\rm{T}}$-differential non-linear flow modes, $v_{4,22}$, $v_{5,32}$, $v_{6,33}$ and $v_{6,222}$ for $\pi^{\pm}$, $\rm{K}^{\pm}$ , $\rm{K}^{0}_{S}$ , p + $\overline{\rm{p}}$, $\Lambda$ + $\overline{\Lambda}$ and $\phi$-meson have been measured for the first time at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV in Pb-Pb collisions with the ALICE detector at the Large Hadron Collider. The results were obtained with a multi-particle technique, correlating the identified hadrons with reference charged particles from a different pseudorapidity region. These non-linear observables probe the contribution from the second and third order initial spatial anisotropy coefficients to higher flow harmonics. All the characteristic features observed in previous $p_{\rm{T}}$-differential anisotropic flow measurements for various particle species are also present in the non-linear flow modes, i.e. increase of magnitude with increasing centrality percentile, mass ordering at low $p_{\rm{T}}$ and particle type grouping in the intermediate $p_{\rm{T}}$ range. Hydrodynamical calculations (iEBE-VISHNU) that use different initial conditions and values of shear and bulk viscosity to entropy density ratios are confronted with the data at low transverse momenta. These calculations exhibit a better agreement with the anisotropic flow coefficients than the non-linear flow modes. These observations indicate that non-linear flow modes can provide additional discriminatory power in the study of initial conditions as well as new stringent constraints to hydrodynamical calculations.
Jet-hadron correlations measured relative to the second order event plane in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV
The Quark Gluon Plasma (QGP) produced in ultra relativistic heavy-ion collisions at the Large Hadron Collider (LHC) can be studied by measuring the modifications of jets formed by hard scattered partons which interact with the medium. We studied these modifications via angular correlations of jets with charged hadrons for jets with momenta 20
Production of (anti-)$^3$He and (anti-)$^3$H in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV
The transverse momentum ($p_{\rm{T}}$) differential yields of (anti-)$^3$He and (anti-)$^3$H measured in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV with ALICE at the LHC are presented. The ratios of the $p_{\rm{T}}$-integrated yields of (anti-)$^3$He and (anti-)$^3$H to the proton yields are reported, as well as the $p_{\rm{T}}$ dependence of the coalescence parameters $B_3$ for (anti-)$^3$He and (anti-)$^3$H. For (anti-)$^3$He, the results obtained in four classes of the mean charged-particle multiplicity density are also discussed. These results are compared to predictions from a canonical statistical hadronization model and coalescence approaches. An upper limit on the total yield of $^4\bar{\mathrm{He}}$ is determined.
Longitudinal and azimuthal evolution of two-particle transverse momentum correlations in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV
This paper presents the first measurements of the charge independent (CI) and charge dependent (CD) two-particle transverse momentum correlators $G_{2}^{\rm CI}$ and $G_{2}^{\rm CD}$ in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV by the ALICE collaboration. The correlators are measured as a function of pair separation in pseudorapidity ($\Delta \eta$) and azimuth ($\Delta \varphi$) and as a function of collision centrality. The correlator $G_{2}^{\rm CI}$ exhibits a longitudinal broadening while undergoing a monotonic azimuthal narrowing from peripheral to central collisions. By contrast, $G_{2}^{\rm CD}$ exhibits a narrowing along both dimensions towards central events. These features are not reproduced by models such as HIJING and AMPT. However, the observed narrowing of the correlators is expected to result from the stronger transverse flow profiles produced in more central collisions and the longitudinal broadening is predicted to be sensitive to momentum currents and the shear viscosity per unit of entropy density $\eta/s$ of the matter produced in the collisions. The observed broadening is found to be consistent with the hypothesized lower bound of $\eta/s$ and is in qualitative agreement with values obtained from anisotropic flow measurements.
Multiplicity dependence of K*(892)$^{0}$ and $φ$(1020) production in pp collisions at $\sqrt{s}$ = 13 TeV
Measurements of identified hadrons as a function of the charged-particle multiplicity in pp collisions enable a search for the onset of collective effects in small collision systems. With such measurements, it is possible to study the mechanisms that determine the shapes of hadron transverse momentum ($p_{\rm{T}}$) spectra, to search for possible modifications of the yields of short-lived hadronic resonances due to scattering effects in the hadron-gas phase, and to investigate different explanations for the multiplicity evolution of strangeness production provided by phenomenological models. In this paper, these topics are addressed through measurements of the $\rm{K}^{*}(892)^{0}$ and $\phi(1020)$ mesons at midrapidity in pp collisions at $\sqrt{s}$ = 13 TeV as a function of the charged-particle multiplicity. The results include the $p_{\rm{T}}$ spectra, $p_{\rm{T}}$-integrated yields, mean transverse momenta, and the ratios of the yields of these resonances to those of longer-lived hadrons. Comparisons with results from other collision systems and energies, as well as predictions from phenomenological models, are also discussed.

Jobs info

There are no job offers at this time