Welcome to the ALICE collaboration

Our mission

 
Welcome to the ALICE websiteThe ALICE Collaboration has built a dedicated detector to exploit the unique physics potential of nucleus-nucleus collisions at LHC energies. Our aim is to study the physics of strongly interacting matter at the highest energy densities reached so far in the laboratory. In such condition, an extreme phase of matter - called the quark-gluon plasma - is formed. Our universe is thought to have been in such a primordial state for the first few millionths of a second after the Big Bang. The properties of such a phase are key issues for Quantum Chromo Dynamics, the understanding of confinement-deconfinement and chiral phase transitions. For this purpose, we are carrying out a comprehensive study of the hadrons, electrons, muons and photons produced in the collisions of heavy nuclei. ALICE is also studying proton-proton and proton-nucleus collisions both as a comparison with nucleus-nucleus collisions and in their own right.

Diversity and Inclusivity in ALICE

The ALICE Collaboration embraces and values the diversity of its team members and colleagues. We are committed to fostering an inclusive environment for all people regardless of their nationality/culture, profession, age/generation, family situation and gender, as well as individual differences such as but not limited to ethnic origin, sexual orientation, belief, disability, or opinions provided that they are consistent with the Organization’s values.
 

Latest ALICE Submission

Measurement of ${\rm D^0}$, ${\rm D^+}$, ${\rm D^{*+}}$ and ${{\rm D^+}_s}$ production in pp collisions at $\mathbf{\sqrt{\textit s}~=~5.02~TeV}$ with ALICE
The measurements of the production of prompt ${\rm D^0}$, ${\rm D^+}$, ${\rm D^{*+}}$, and ${{\rm D^+}_s}$ mesons in proton--proton (pp) collisions at $\sqrt{s}=5.02$ TeV with the ALICE detector at the Large Hadron Collider (LHC) are reported. D mesons were reconstructed at mid-rapidity ($|y|
Real-time data processing in the ALICE High Level Trigger at the LHC
At the Large Hadron Collider at CERN in Geneva, Switzerland, atomic nuclei are collided at ultra-relativistic energies. Many final-state particles are produced in each collision and their properties are measured by the ALICE detector. The detector signals induced by the produced particles are digitized leading to data rates that are in excess of 48 GB/$s$. The ALICE High Level Trigger (HLT) system pioneered the use of FPGA- and GPU-based algorithms to reconstruct charged-particle trajectories and reduce the data size in real time. The results of the reconstruction of the collision events, available online, are used for high level data quality and detector-performance monitoring and real-time time-dependent detector calibration. The online data compression techniques developed and used in the ALICE HLT have more than quadrupled the amount of data that can be stored for offline event processing.
Event-shape and multiplicity dependence of freeze-out radii in pp collisions at $\sqrt{\textit s}=7$ TeV
Two-particle correlations in high-energy collision experiments enable the extraction of particle source radii by using the Bose-Einstein enhancement of pion production at low relative momentum $q\propto 1/R$. It was previously observed that in $\rm{p}\rm{p}$ collisions at $\sqrt{s}=7$ TeV the average pair transverse momentum $k_{\rm T}$ range of such analyses is limited due to large background correlations which were attributed to mini-jet phenomena. To investigate this further, an event-shape dependent analysis of Bose-Einstein correlations for pion pairs is performed in this work. By categorizing the events by their transverse sphericity $S_{\rm T}$ into spherical $(S_\textrm{T}>0.7)$ and jet-like $(S_\textrm{T}
Investigations of anisotropic flow using multi-particle azimuthal correlations in pp, p-Pb, Xe-Xe, and Pb-Pb collisions at the LHC
Measurements of anisotropic flow coefficients ($v_n$) and their cross-correlations using two- and multi-particle cumulant methods are reported in collisions of pp at $\sqrt{s} = 13$ TeV, p-Pb at $\sqrt{s_{_{\rm NN}}} = 5.02$ TeV, Xe-Xe at $\sqrt{s_{_{\rm NN}}} = 5.44$ TeV, and Pb-Pb at $\sqrt{s_{_{\rm NN}}} = 5.02$ TeV recorded with the ALICE detector. These measurements are performed as a function of multiplicity in the mid-rapidity region $|\eta| v_3 > v_4$ is found in pp and p-Pb collisions, similar to that seen in large collision systems, while a weak $v_2$ multiplicity dependence is observed relative to nucleus--nucleus collisions in the same multiplicity range. Using the novel subevent method, $v_{2}$ measured in pp and p-Pb collisions with four-particle cumulants is found to be compatible with that from six-particle cumulants. The symmetric cumulants $SC(m,n)$ calculated with the subevent method which evaluate the correlation strength between $v_n^2$ and $v_m^2$ are also presented. The presented data, which add further support to the existence of long-range multi-particle azimuthal correlations in high multiplicity pp and p-Pb collisions, can neither be described by PYTHIA8 nor by IP-Glasma+MUSIC+UrQMD model calculations, and hence provide new insights into the understanding of collective effects in small collision systems.
Charged-particle pseudorapidity density at mid-rapidity in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 8.16 TeV
The pseudorapidity density of charged particles, $\rm{d}\it{N}_\rm{ch}/\rm{d}\it{\eta}$, in p-Pb collisions has been measured at a centre-of-mass energy per nucleon-nucleon pair of $\sqrt{s_{\rm{NN}}}$ = 8.16 TeV at mid-pseudorapidity for non-single-diffractive events. The results cover 3.6 units of pseudorapidity, $|\eta|-1.3$. The $\rm{d}\it{N}_\rm{ch}/\rm{d}\it{\eta}$ is also measured for different centrality estimators, based both on the charged-particle multiplicity and on the energy deposited in the Zero-Degree Calorimeters. A study of the implications of the large multiplicity fluctuations due to the small number of participants for systems like p-Pb in the centrality calculation for multiplicity-based estimators is discussed, demonstrating the advantages of determining the centrality with energy deposited near beam rapidity.

ALICE News