Welcome to the ALICE collaboration

Our mission

 
Welcome to the ALICE websiteThe ALICE Collaboration has built a dedicated detector to exploit the unique physics potential of nucleus-nucleus collisions at LHC energies. Our aim is to study the physics of strongly interacting matter at the highest energy densities reached so far in the laboratory. In such condition, an extreme phase of matter - called the quark-gluon plasma - is formed. Our universe is thought to have been in such a primordial state for the first few millionths of a second after the Big Bang. The properties of such a phase are key issues for Quantum Chromo Dynamics, the understanding of confinement-deconfinement and chiral phase transitions. For this purpose, we are carrying out a comprehensive study of the hadrons, electrons, muons and photons produced in the collisions of heavy nuclei. ALICE is also studying proton-proton and proton-nucleus collisions both as a comparison with nucleus-nucleus collisions and in their own right.
 

Latest ALICE Submission

Analysis of the apparent nuclear modification in peripheral Pb-Pb collisions at 5.02 TeV
Charged-particle spectra at midrapidity are measured in Pb-Pb collisions at the centre-of-mass energy per nucleon-nucleon pair $\sqrt{s_{\rm NN}}$ = 5.02 TeV and presented in centrality classes ranging from most central (0-5%) to most peripheral (95-100%) collisions. Possible medium effects are quantified using the nuclear modification factor ($R_{\rm AA}$) by comparing the measured spectra with those from proton-proton collisions, scaled by the number of independent nucleon-nucleon collisions obtained from a Glauber model. At large transverse momenta ($8
Suppression of $Λ(1520)$ resonance production in central Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV
The production yield of the $\Lambda(1520)$ baryon resonance is measured at mid-rapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV with the ALICE detector at the LHC. The measurement is performed in the $\Lambda(1520)\rightarrow {\rm pK}^{-}$ (and charge conjugate) hadronic decay channel as a function of the transverse momentum ($p_{\rm T}$) and collision centrality. The $p_{\rm T}$-integrated production rate of $\Lambda(1520)$ relative to $\Lambda$ in central collisions is suppressed by about a factor of 2 with respect to peripheral collisions. This is the first observation of the suppression of a baryonic resonance at LHC and the first evidence of $\Lambda(1520)$ suppression in heavy-ion collisions. The measured $\Lambda(1520)/\Lambda$ ratio in central collisions is smaller than the value predicted by the statistical hadronisation model calculations. The shape of the measured $p_{\rm T}$ distribution and the centrality dependence of the suppression are reproduced by the EPOS3 Monte Carlo event generator. The measurement adds further support to the formation of a dense hadronic phase in the final stages of the evolution of the fireball created in heavy-ion collisions, lasting long enough to cause a significant reduction in the observable yield of short-lived resonances.
Centrality and pseudorapidity dependence of the charged-particle multiplicity density in Xe-Xe collisions at $\sqrt{s_{\rm NN}}$ = 5.44 TeV
In this Letter, the ALICE Collaboration presents the first measurements of the charged-particle multiplicity density, $\rm{d}N_{\rm{ch}}/\rm{d}\eta$, and total charged-particle multiplicity, $N_{\rm{ch}}^{\rm{tot}}$, in Xe-Xe collisions at a centre-of-mass energy per nucleon--nucleon pair of $\sqrt{s_{\rm NN}}$ = 5.44 TeV. The measurements are performed as a function of collision centrality over a wide pseudorapidity range of $-3.5
Two particle differential transverse momentum and number density correlations in p-Pb and Pb-Pb at the LHC
We present measurements of two-particle differential number correlation functions $R_{2}$ and transverse momentum correlation functions $P_{2}$, obtained from p-Pb collisions at 5.02 TeV and Pb-Pb collisions at 2.76 TeV. The results are obtained using charged particles in the pseudorapidity range $|\eta|
Measurements of low-$p_{\rm T}$ electrons from semileptonic heavy-flavour hadron decays at mid-rapidity in pp and Pb-Pb collisions at $\mathbf{\sqrt{{\it s}_\mathrm{NN}}}$ = 2.76 TeV
Transverse-momentum ($p_{\rm T}$) differential yields of electrons from semileptonic heavy-flavour hadron decays have been measured in the most central (0-10%) and in semi-central (20-40%) Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV. The corresponding production cross section in pp collisions has been measured at the same energy with substantially reduced systematic uncertainties with respect to previously published results. The modification of the yield in Pb-Pb collisions with respect to the expectation from an incoherent superposition of nucleon-nucleon collisions is quantified at mid-rapidity ($|y|$ $

ALICE News