ALICE mission

ALICE is optimized to study the collisions of nuclei at the ultra-relativistic energies provided by the LHC. The aim is to study the physics of strongly interacting matter at the highest energy densities reached so far in the laboratory. In such conditions, an extreme phase of matter - called the quark-gluon plasma - is formed. Our universe is thought to have been in such a primordial state for the first few millionths of a second after the Big Bang, before quarks and gluons were bound together to form protons and neutrons. Recreating this primordial state of matter in the laboratory and understanding how it evolves will allow us to shed light on questions about how matter is organized and the mechanisms that confine quarks and gluons. For this purpose, we are carrying out a comprehensive study of the hadrons, electrons, muons, and photons produced in the collisions of heavy nuclei (208Pb). ALICE is also studying proton-proton and proton-nucleus collisions both as a comparison with nucleus-nucleus collisions and in their own right. In 2021, ALICE completed a significant upgrade of its detectors to further enhance its capabilities and continue its scientific journey at the LHC in Run 3 and 4, until the end of 2032. At the same time,  upgrade plans are being made for ALICE 3, the next-generation experiment for LHC Runs 5 and 6.

Recent highlights

 

Recent highlights

ALICE results show that the charm jets exhibit less suppression than the inclusive jets, which is consistent with mass and colour-charge dependence: read more ....
Near-miss collisions at the Large Hadron Collider are shedding light on the dynamics of gluons, which contribute 99% to the mass of protons and neutrons: to the story ....

Latest ALICE Submissions

Centrality dependence of charged-particle pseudorapidity density at midrapidity in Pb-Pb collisions at $\mathbf{\sqrt{\textit{s}_{\rm NN}} = 5.36}$ TeV The ALICE Collaboration reports its first LHC Run 3 measurements of charged-particle pseudorapidity density at midrapidity in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}}=5.36$ TeV. Particle multiplicity in high-energy collisions characterises the system geometry, constrains particle-production mechanisms, and is used to estimate initial energy density. Multiplicity also acts as a reference for subsequent measurements as a function of centrality. In this letter, for the first time, charged particles are reconstructed using the upgraded ALICE Inner Tracking System and Time Projection Chamber, while the collision centrality is determined by measuring charged-particle multiplicities with the Fast Interaction Trigger system. Pseudorapidity density, ${\rm d}N_{\rm ch}/{\rm d}\eta$, is presented, averaged over events, for various centrality classes. Results are shown as a function of pseudorapidity and the average number of participating nucleons ($\langle N_{\mathrm{part}}\rangle$) in the collision. The average charged-particle pseudorapidity density ($\langle {\rm d}N_{\rm ch}/{\rm d}\eta \rangle$) at midrapidity ($|\eta| < ~0.5$) is 2047 $\pm$ 54 for the 5% most central collisions. The value of $\langle {\rm d}N_{\rm ch}/{\rm d}\eta \rangle$ normalised to $\langle N_{\mathrm{part}}\rangle/2$ as a function of $\sqrt{s_{\mathrm{NN}}}$ follows the trend established in previous measurements in heavy-ion collisions. Theoretical models based on mechanisms for particle production in nuclear collisions that involve the formation of quark-gluon plasma medium and models based on individual nucleon-nucleon interactions are compared to the data.
2504.02505
D$^{0}$-meson-tagged jet axes difference in proton-proton collisions at $\mathbf{\sqrt{\textit{s}} = 5.02}$ TeV Heavy-flavor quarks produced in proton-proton (pp) collisions provide a unique opportunity to investigate the evolution of quark-initiated parton showers from initial hard scatterings to final-state hadrons. By examining jets that contain heavy-flavor hadrons, this study explores the effects of both perturbative and non-perturbative QCD on jet formation and structure. The angular differences between various jet axes, $\Delta R_{\rm axis}$, offer insight into the radiation patterns and fragmentation of charm quarks. The first measurement of D$^{0}$-tagged jet axes differences in pp collisions at $\sqrt{s}=5.02$ TeV by the ALICE experiment at the LHC is presented for jets with transverse momentum $p_{\rm T}^{\rm ch~jet} \geq 10$ ${\rm GeV}/c$ and D$^0$ mesons with $p_{\rm T}^{\rm D^{0}} \geq 5$ ${\rm GeV}/c$. In this D$^0$-meson-tagged jet measurement, three jet axis definitions, each with different sensitivities to soft, wide-angle radiation, are used: the Standard axis, Soft Drop groomed axis, and Winner-Takes-All axis. Measurements of the radial distributions of D$^0$ mesons with respect to the jet axes, $\Delta R_{\mathrm{axis-D^0}}$, are reported, along with the angle, $\Delta R_{\mathrm{axis}}$, between the three jet axes. The D$^{0}$ meson emerges as the leading particle in these jets, closely aligning with the Winner-Takes-All axis and diverging from the Standard jet axis. The results also examine how varying the sensitivity to soft radiation with grooming influences the orientation of the Soft Drop jet axis, and uncover that charm-jet structure is more likely to survive grooming when the Soft Drop axis is further from the D$^{0}$ direction, providing further evidence of the dead-cone effect recently measured by ALICE.
2504.02571
Accessing the deuteron source with pion-deuteron femtoscopy in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV Femtoscopy of non-identical particle pairs has been instrumental for precision measurements of both two-particle sources and the final-state interactions in high-energy elementary and heavy-ion collisions. The majority of measurements assessing the source properties are based on identical particle pairs, providing direct access to the characteristics of the single-particle source. The work in this paper demonstrates, via femtoscopy measurements of charged pion-deuteron pairs in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, the feasibility of accessing the characteristics of the single-particle femtoscopic source by using particle pairs with large mass differences such as pions and deuterons. The first experimental results of the measurement of deuteron source sizes in ultrarelativistic heavy-ion collisions are presented. The results show good agreement with the trend derived from other charged hadrons such as pions, kaons, and protons as a function of transverse mass, indicating similar source properties
2504.02333
Revealing the microscopic mechanism of deuteron formation at the LHC The formation of light (anti)nuclei with mass number A of a few units (e.g., d, $^3$He, and $^4$He) in high-energy hadronic collisions presents a longstanding mystery in nuclear physics [1,2]. It is not clear how nuclei bound by a few MeV can emerge in environments characterized by temperatures above 100 MeV [3-5], about 100,000 times hotter than the center of the Sun. Despite extensive studies, this question remained unanswered. The ALICE Collaboration now addresses it with a novel approach using deuteron-pion momentum correlations in proton-proton (pp) collisions at the Large Hadron Collider (LHC). Our results provide model-independent evidence that about 80% of the observed (anti)deuterons are produced in nuclear fusion reactions [6] following the decay of short-lived resonances, such as the $\Delta (1232)$. These findings resolve a crucial gap in our understanding of nucleosynthesis in hadronic collisions. Beyond answering the fundamental question on how nuclei are formed in hadronic collisions, the results can be employed in the modeling of the production of light and heavy nuclei in cosmic rays [7] and dark matter decays [8,9].
2504.02393
First observation of ultra-long-range azimuthal correlations in low multiplicity pp and p-Pb collisions at the LHC This study presents the first observation of ultra-long-range two-particle azimuthal correlations with pseudorapidity separation of ($|\Delta \eta| > 5.0$) in proton-proton (pp) and ($|\Delta \eta| > 6.5$) in proton-lead (p-Pb) collisions at the LHC, down to and below the minimum-bias multiplicity. Two-particle correlation coefficients (${V}_{2\Delta}$) are measured after removing non-flow (jets and resonance decays) contributions using the template-fit method across various multiplicity classes, providing novel insights into the origin of long-range correlations in small systems. Comparisons with the 3D-Glauber + MUSIC + UrQMD hydrodynamic model reveal significant discrepancies at low multiplicities, indicating possible dynamics beyond typical hydrodynamic behavior. Initial-state models based on the Color Glass Condensate framework generate only short-range correlations, while PYTHIA simulations implemented with the string-shoving mechanism also fail to describe these ultra-long-range correlations. The results challenge existing paradigms and question the underlying mechanisms in low-multiplicity pp and p-Pb collisions. The findings impose significant constraints on models describing collective phenomena in small collision systems and advance the understanding of origin of long-range correlations at Large Hadron Collider (LHC) energies.
2504.02359
See all submissions...

Upcoming Conferences (Next Week)

Diversity and Inclusivity in ALICE

The ALICE Collaboration embraces and values the diversity of its team members and colleagues. We are committed to fostering an inclusive environment for all people regardless of their nationality/culture, profession, age/generation, family situation and gender, as well as individual differences such as but not limited to ethnic origin, sexual orientation, belief, disability, or opinions provided that they are consistent with the Organization’s values.