update on - 13:12:17

ALICE Calendar

ALICE mission

The ALICE Collaboration has built a detector optimized to study the collisions of nuclei at the ultra-relativistic energies provided by the LHC. The aim is to study the physics of strongly interacting matter at the highest energy densities reached so far in the laboratory. In such conditions, an extreme phase of matter - called the quark-gluon plasma - is formed. Our universe is thought to have been in such a primordial state for the first few millionths of a second after the Big Bang, before quarks and gluons were bound together to form protons and neutrons. Recreating this primordial state of matter in the laboratory and understanding how it evolves will allow us to shed light on questions about how matter is organized and the mechanisms that confine quarks and gluons. For this purpose, we are carrying out a comprehensive study of the hadrons, electrons, muons, and photons produced in the collisions of heavy nuclei (208Pb). ALICE is also studying proton-proton and proton-nucleus collisions both as a comparison with nucleus-nucleus collisions and in their own right. In 2021 ALICE is completing a significant upgrade of its detectors to further enhance its capabilities and continue its scientific journey at the LHC for many years to come.

Recent highlights


Recent highlights

The ALICE Collaboration presents several new physics results at the 9th Large Hadron Collider Physics conference LHPC2021 this week (, as well as the ongoing major detector upgrade for the LHC Run 3, prospects for further upgrades for Run 4, and for a completely new heavy-ion detector for Run 5 and beyond.
Non-identical particle femtoscopy of kaon-proton pairs produced in Pb–Pb collisions at the LHC provides an accurate measurement of kaon–proton scattering parameters at low relative momentum: arXiv.
In a recent study, the ALICE Collaboration has studied baryon-to-meson ratios with a new twist: by studying the ratios in two parts of the events separately – inside jets and in the event portion perpendicular to a jet cone. arXiv.

Latest ALICE Submissions

Direct observation of the dead-cone effect in QCDAt particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD). The vacuum is not transparent to the partons and induces gluon radiation and quark pair production in a process that can be described as a parton shower. Studying the pattern of the parton shower is one of the key experimental tools in understanding the properties of QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass $m$ and energy $E$, within a cone of angular size $m$/$E$ around the emitter. A direct observation of the dead-cone effect in QCD has not been possible until now, due to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible bound hadronic states. We report the first direct observation of the QCD dead-cone by using new iterative declustering techniques to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD, which is derived more generally from its origin as a gauge quantum field theory. Furthermore, the measurement of a dead-cone angle constitutes a direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics.
Charm-quark fragmentation fractions and production cross section at midrapidity in pp collisions at the LHCRecent $p_{\rm T}$-integrated cross section measurements of the ground-state charm mesons and baryons, D$^{\rm 0}$, D$^+$, D$_{\rm s}^{+}$, $\Lambda_{\rm c}^{+}$, and $\Xi_{\rm c}^0$, are used to evaluate the charm fragmentation fractions and production cross section per unit of rapidity at midrapidity ($|y| < ~0.5$), in pp collisions at $\sqrt{s} = 5.02$ TeV at the LHC. The latter is ${\rm d} \sigma^{\rm c \overline{c}}/{\rm d} y|_{|y| < ~ 0.5}$ =1165 $\pm 44(\rm{stat})^{+134}_{-101}(\rm{syst})$ $\mu b$. These measurements were obtained for the first time in hadronic collisions at the LHC including the charm baryon states, recently measured by ALICE at midrapidity. The charm fragmentation fractions differ significantly from the values measured in e$^+$e$^-$ and ep collisions, providing evidence of the dependence of the parton-to-hadron fragmentation fractions on the collision system, indicating that the assumption of their universality is not supported by the measured cross sections. An increase of a factor of about 3.3 for the fragmentation fraction for the $\Lambda_{\rm c}^{+}$ with a significance of $5\,\sigma$ between the values obtained in pp collisions and those obtained in e$^+$e$^-$ (ep) collisions is reported. The fragmentation fraction for the $\Xi_{\rm c}^0$ was obtained for the first time in any collision system. The measured fragmentation fractions were used to update the $\rm c \overline{c}$ cross sections per unit of rapidity at $|y| < ~0.5$ at $\sqrt{s} = 2.76$ and 7 TeV, which are about 40% higher than the previously published results. The data were compared with perturbative-QCD calculations and lie at the upper edge of the theoretical bands.
Experimental evidence for an attractive p-$φ$ interactionThis Letter presents the first experimental evidence of the attractive strong interaction between a proton and a $\phi$ meson. The result is obtained from two-particle correlations of combined p-$\phi \oplus \overline{\rm {p}}$-$\phi$ pairs measured in high-multiplicity pp collisions at $\sqrt{s}~=~13$ TeV by the ALICE collaboration. The spin-averaged scattering length and effective range of the p-$\phi$ interaction are extracted from the fully corrected correlation function employing the Lednick\'y-Lyuboshits approach. In particular, the imaginary part of the scattering length vanishes within uncertainties, indicating that inelastic processes do not play a prominent role for the p-$\phi$ interaction. These data demonstrate that the interaction is dominated by elastic p-$\phi$ scattering. Furthermore, an analysis employing phenomenological Gaussian- and Yukawa-type potentials is conducted. Under the assumption of the latter, the N-$\phi$ coupling constant is found to be $g_{\rm{N}-\phi} = 0.14\pm 0.03\,(\mathrm{stat.})\pm 0.02\,(\mathrm{syst.})$. This work provides valuable experimental input to accomplish a self-consistent description of the N-$\phi$ interaction, which is particularly relevant for the more fundamental studies on partial restoration of chiral symmetry in nuclear medium.
Charged-particle multiplicity fluctuations in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeVMeasurements of event-by-event fluctuations of charged-particle multiplicities in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV using the ALICE detector at the CERN Large Hadron Collider (LHC) are presented in the pseudorapidity range $|\eta| < ~0.8$ and transverse momentum $0.2 < ~ p_{\rm T} < ~ 2.0$ GeV/$c$. The amplitude of the fluctuations is expressed in terms of the variance normalized by the mean of the multiplicity distribution. The $\eta$ and $p_{\rm T}$ dependences of the fluctuations and their evolution with respect to collision centrality are investigated. The multiplicity fluctuations tend to decrease from peripheral to central collisions. The results are compared to those obtained from HIJING and AMPT Monte Carlo event generators as well as to experimental data at lower collision energies. Additionally, the measured multiplicity fluctuations are discussed in the context of the isothermal compressibility of the high-density strongly-interacting system formed in central Pb-Pb collisions.
Measurement of K$^{*}$(892)$^{\mathrm{\pm}}$ production in inelastic pp collisions at the LHCThe first results on K$^{*}$(892)$^{\mathrm{\pm}}$ resonance production in inelastic pp collisions at LHC energies of $\sqrt{s} = 5.02$, 8, and 13 TeV are presented. The K$^{*}$(892)$^{\mathrm{\pm}}$ has been reconstructed via its hadronic decay channel K$^{*}$(892)$^{\mathrm{\pm}}$ $\rightarrow$ $\mathrm {K^0_S}$ $~+~\pi^{\pm}$ with the ALICE detector. Measurements of transverse momentum distributions, integrated yields, and mean transverse momenta for charged K$^{*}$(892) are found to be consistent with previous ALICE measurements for neutral K$^{*}$(892) within uncertainties. For $p_{\mathrm{T}} > 1$ GeV/$c$ the K$^{*}$(892)$^{\mathrm{\pm}}$ transverse momentum spectra become harder with increasing centre-of-mass energy from 5.02 to 13 TeV, similar to what previously observed for charged kaons and pions. For $p_{\mathrm{T}} < ~ 1$ GeV/$c$ the K$^{*}$(892)$^{\mathrm{\pm}}$ yield does not evolve significantly and the abundance of K$^{*}$(892)$^{\mathrm{\pm}}$ relative to K is rather independent of the collision energy. The transverse momentum spectra, measured for K$^{*}$(892)$^{\mathrm{\pm}}$ at midrapidity in the interval $0 < ~ p_{\mathrm{T}} < ~ 15$ GeV/$c$, are not well described by predictions of different versions of PYTHIA 6, PYTHIA 8 and EPOS-LHC event generators. These generators reproduce the measured $p_{\mathrm{T}}$-integrated K$^{*\mathrm{\pm}}$/K ratios and describe well the momentum dependence for $p_{\mathrm{T}} < ~ 2$ GeV/$c$.
See all submissions...

Upcoming Conferences (Next Week)

Diversity and Inclusivity in ALICE

The ALICE Collaboration embraces and values the diversity of its team members and colleagues. We are committed to fostering an inclusive environment for all people regardless of their nationality/culture, profession, age/generation, family situation and gender, as well as individual differences such as but not limited to ethnic origin, sexual orientation, belief, disability, or opinions provided that they are consistent with the Organization’s values.


News of cards

The two barrels of the largest pixel detector ever built have been successfully lowered into the cavern and stand ready for commissioning.

The new ITS Outer Barrel was installed in March 2021.

The new Muon Forward Tracker, one of ALICE’s main sub-detectors, was installed in the cavern in December 2020.

The upgraded ALICE Miniframe was reinstalled in the experimental cavern in November

The refurbished TPC was lowered into the ALICE cavern and installed in the experiment in August 2020.