ALICE mission

The ALICE Collaboration has built a detector optimized to study the collisions of nuclei at the ultra-relativistic energies provided by the LHC. The aim is to study the physics of strongly interacting matter at the highest energy densities reached so far in the laboratory. In such conditions, an extreme phase of matter - called the quark-gluon plasma - is formed. Our universe is thought to have been in such a primordial state for the first few millionths of a second after the Big Bang, before quarks and gluons were bound together to form protons and neutrons. Recreating this primordial state of matter in the laboratory and understanding how it evolves will allow us to shed light on questions about how matter is organized and the mechanisms that confine quarks and gluons. For this purpose, we are carrying out a comprehensive study of the hadrons, electrons, muons, and photons produced in the collisions of heavy nuclei (208Pb). ALICE is also studying proton-proton and proton-nucleus collisions both as a comparison with nucleus-nucleus collisions and in their own right. In 2021 ALICE is completing a significant upgrade of its detectors to further enhance its capabilities and continue its scientific journey at the LHC for many years to come.

Recent highlights


Recent highlights

The ALICE Collaboration reports a wide range of new physics results at the Large Hadron Collider Physics conference (LHCP2022) this week (16-21 May 2022). The status of the upgraded detector commissioning for the LHC Run 3, prospects for further upgrades for Run 4, and the completely new heavy-ion detector ALICE 3 for Run 5 and beyond are also presented. The ALICE Collaboration participates in LHCP2022 with 6 plenary, 17 parallel and 11 poster presenters. The plenary presentation on 16 May reports the highlights of new ALICE measurements and the status of the experiment. A selection of these topics is presented in the following sections. Read more...
The ALICE Collaboration reports a wide range of new physics results at the Quark Matter 2022 conference this week (4-10 April 2022). The status of the upgraded detector commissioning for the LHC Run 3, prospects for further upgrades for Run 4, and the completely new heavy-ion detector ALICE 3 for Run 5 and beyond are also presented. The ALICE Collaboration participates in Quark Matter 2022 with 1 plenary, 35 parallel, and 94 poster presenters. Read more...
The anti-3He inelastic interaction cross-section was measured for the first time, using the ALICE detector material as an effective target in proton-proton and lead-lead collisions at the LHC: arXiv link.... Read more.

Latest ALICE Submissions

Dielectron production at midrapidity at low transverse momentum in peripheral and semi-peripheral Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeVThe first measurement of the ${\rm e}^{+}{\rm e}^{-}$ pair production at low lepton pair transverse momentum ($p_{\rm T,ee}$) and low invariant mass ($m_{\rm ee}$) in non-central Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV at the LHC is presented. The dielectron production is studied with the ALICE detector at midrapidity ($|\eta_{\rm e}| < ~ 0.8$) as a function of invariant mass ($0.4 \leq m_{\rm ee} < ~ 2.7$ GeV/$c^2$) in the 50$-$70% and 70$-$90% centrality classes for $p_{\rm T,ee} < ~ 0.1$ GeV/$c$, and as a function of $p_{\rm T,ee}$ in three $m_{\rm ee}$ intervals in the most peripheral Pb$-$Pb collisions. Below a $p_{\rm T,ee}$ of 0.1 GeV/$c$, a clear excess of ${\rm e}^{+}{\rm e}^{-}$ pairs is found compared to the expectations from known hadronic sources and predictions of thermal radiation from the medium. The $m_{\rm ee}$ excess spectra are reproduced, within uncertainties, by different predictions of the photon$-$photon production of dielectrons, where the photons originate from the extremely strong electromagnetic fields generated by the highly Lorentz-contracted Pb nuclei. Lowest-order quantum electrodynamic (QED) calculations, as well as a model that takes into account the impact-parameter dependence of the average transverse momentum of the photons, also provide a good description of the $p_{\rm T,ee}$ spectra. The measured $\sqrt{\langle p_{\rm T,ee}^{2} \rangle}$ of the excess $p_{\rm T,ee}$ spectrum in peripheral Pb$-$Pb collisions is found to be comparable to the values observed previously at RHIC in a similar phase-space region.
W$^\pm$-boson production in p$-$Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV and PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeVThe production of the W$^\pm$ bosons measured in p$-$Pb collisions at a centre-of-mass energy per nucleon$-$nucleon collision $\sqrt{s_{NN}} = 8.16$ TeV and Pb$-$Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with ALICE at the LHC is presented. The W$^\pm$ bosons are measured via their muonic decay channel, with the muon reconstructed in the pseudorapidity region $-4 < ~ \eta^\mu_{\rm lab} < ~ -2.5$ with transverse momentum $p_{\rm T}^\mu > 10$ GeV/$c$. While in Pb$-$Pb collisions the measurements are performed in the forward ($2.5 < ~ y^\mu_{\rm cms} < ~ 4$) rapidity region, in p$-$Pb collisions, where the centre-of-mass frame is boosted with respect to the laboratory frame, the measurements are performed in the backward ($-4.46 < ~ y^\mu_{\rm cms} < ~ -2.96$) and forward ($2.03 < ~ y^\mu_{\rm cms} < ~ 3.53$) rapidity regions. The W$^{-}$ and W$^{+}$ production cross sections, lepton-charge asymmetry, and nuclear modification factors are evaluated as a function of the muon rapidity. In order to study the production as a function of the p$-$Pb collision centrality, the production cross sections of the W$^{-}$ and W$^{+}$ bosons are combined and normalised to the average number of binary nucleon$-$nucleon collision $\langle N_\mathrm{coll} \rangle$. In Pb$-$Pb collisions, the same measurements are presented as a function of the collision centrality. Study of the binary scaling of the W$^\pm$-boson cross sections in p$-$Pb and Pb$-$Pb collisions is also reported. The results are compared with perturbative QCD (pQCD) calculations, with and without nuclear modifications of the Parton Distribution Functions (PDFs), as well as with available data at the LHC. Significant deviations from the theory expectations are found in the two collision systems, indicating that the measurements can provide additional constraints for the determination of nuclear PDF (nPDFs) and in particular of the light-quark distributions.
Photoproduction of low-$p_{\rm T}$ J/$ψ$ from peripheral to central Pb$-$Pb collisions at 5.02 TeVAn excess of J/$\psi$ yield at very low transverse momentum ($p_{\rm T} < ~ 0.3$ GeV/$c$), originating from coherent photoproduction, is observed in peripheral and semicentral hadronic Pb$-$Pb collisions at a center-of-mass energy per nucleon pair of $\sqrt{s_{\rm NN}} = 5.02$ TeV. The measurement is performed with the ALICE detector via the dimuon decay channel at forward rapidity ($2.5 < ~y < ~4$). The nuclear modification factor at very low $p_{\rm T}$ and the coherent photoproduction cross section are measured as a function of centrality down to the 10% most central collisions. These results extend the previous study at $\sqrt{s_{\rm NN}} = 2.76$ TeV, confirming the clear excess over hadronic production in the $p_{\rm T}$ range 0$-$0.3 GeV/$c$ and the centrality range 70$-$90%, and establishing an excess with a significance greater than 5$\sigma$ also in the 50$-$70% and 30$-$50% centrality ranges. The results are compared with earlier measurements at $\sqrt{s_{\rm NN}} = 2.76$ TeV and with different theoretical predictions aiming at describing how coherent photoproduction occurs in hadronic interactions with nuclear overlap.
Elliptic flow of charged particles at midrapidity relative to the spectator plane in Pb-Pb and Xe-Xe collisionsMeasurements of the elliptic flow coefficient relative to the collision plane defined by the spectator neutrons $v_2${$\Psi_{\rm SP}$} in collisions of Pb ions at center-of-mass energy per nucleon-nucleon pair $\sqrt{s_{\rm NN}}$=2.76 TeV and Xe ions at $\sqrt{s_{\rm NN}}$=5.44 TeV are reported. The results are presented for charged particles produced at midrapidity as a function of centrality and transverse momentum. The ratio between $v_2${$\Psi_{\rm SP}$} and the elliptic flow coefficient relative to the participant plane $v_2${4}, estimated using four-particle correlations, deviates by up to 20% from unity depending on centrality. This observation differs strongly from the magnitude of the corresponding eccentricity ratios predicted by the TRENTo and the elliptic power models of initial state fluctuations that are tuned to describe the participant plane anisotropies. The differences can be interpreted as a decorrelation of the neutron spectator plane and the reaction plane because of fragmentation of the remnants from the colliding nuclei, which points to an incompleteness of current models of initial state fluctuations. A significant transverse momentum dependence of the ratio $v_2${$\Psi_{\rm SP}$}/$v_2${4} is observed in all but the most central collisions, which may help to understand whether momentum anisotropies at low and intermediate transverse momentum have a common origin in initial state fluctuations. The ratios of $v_2${$\Psi_{\rm SP}$} and $v_2${4} to the corresponding initial state eccentricities for Xe-Xe and Pb-Pb collisions at similar initial entropy density show a difference of $(7.0 \pm 0.9)$% with an additional variation of +1.8% when including RHIC data in the TRENTo parameter extraction. These observations provide new experimental constraints for viscous effects in the hydrodynamic modeling of the expanding quark-gluon plasma.
First measurement of antideuteron number fluctuations at energies available at the Large Hadron ColliderThe first measurement of event-by-event antideuteron number fluctuations in high energy heavy-ion collisions is presented. The measurements are carried out at midrapidity ($|\eta| < ~ 0.8$) as a function of collision centrality in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV using the ALICE detector. A significant negative correlation between the produced antiprotons and antideuterons is observed in all collision centralities. The results are compared with coalescence calculations, which fail to describe the measurement, in particular if a correlated production of protons and neutrons is assumed. Thermal-statistical model calculations describe the data within uncertainties only for correlation volumes that are different with respect to those describing proton yields and a similar measurement of net-proton number fluctuations.
See all submissions...

Upcoming Conferences (Next Week)

Diversity and Inclusivity in ALICE

The ALICE Collaboration embraces and values the diversity of its team members and colleagues. We are committed to fostering an inclusive environment for all people regardless of their nationality/culture, profession, age/generation, family situation and gender, as well as individual differences such as but not limited to ethnic origin, sexual orientation, belief, disability, or opinions provided that they are consistent with the Organization’s values.

News of cards

ALICE DCS measured the effects of Tonga volcano eruption (and confirmed the speed of sound)

The Fast Interaction Trigger is the final piece of the puzzle of ALICE’s LS2 sub-detector installations.

The two barrels of the largest pixel detector ever built have been successfully lowered into the cavern and stand ready for commissioning.

The new ITS Outer Barrel was installed in March 2021.

The new Muon Forward Tracker, one of ALICE’s main sub-detectors, was installed in the cavern in December 2020.