ALICE mission

ALICE is optimized to study the collisions of nuclei at the ultra-relativistic energies provided by the LHC. The aim is to study the physics of strongly interacting matter at the highest energy densities reached so far in the laboratory. In such conditions, an extreme phase of matter - called the quark-gluon plasma - is formed. Our universe is thought to have been in such a primordial state for the first few millionths of a second after the Big Bang, before quarks and gluons were bound together to form protons and neutrons. Recreating this primordial state of matter in the laboratory and understanding how it evolves will allow us to shed light on questions about how matter is organized and the mechanisms that confine quarks and gluons. For this purpose, we are carrying out a comprehensive study of the hadrons, electrons, muons, and photons produced in the collisions of heavy nuclei (208Pb). ALICE is also studying proton-proton and proton-nucleus collisions both as a comparison with nucleus-nucleus collisions and in their own right. In 2021, ALICE completed a significant upgrade of its detectors to further enhance its capabilities and continue its scientific journey at the LHC in Run 3 and 4, until the end of 2032. At the same time,  upgrade plans are being made for ALICE 3, the next-generation experiment for LHC Runs 5 and 6.

Recent highlights


Recent highlights

ALICE, for the first time, has measured the interaction of open-charm mesons (D+ and D*+) with charged pions and kaons for all the charge combinations: Read more
CERN Bulletin and CERN Courier: ALICE is upgrading its Inner Tracking System and adding a forward calorimeter for the next phase of the LHC upgrade. Read more
The first experimental measurement of the incoherent photonuclear production of J/ψ in ultraperipheral heavy-ion collisions is better explained by the presence of subnuclear quantum fluctuations of the gluon field. Read more

Latest ALICE Submissions

Measurement of $Ω^0_{\rm c}$ baryon production and branching-fraction ratio ${\rm BR(Ω^0_c \rightarrow Ω^- e^+ν_e)} / {\rm BR(Ω^0_c \rightarrow Ω^- π^+)}$ in pp collisions at $\sqrt{s}$ = 13 TeV The inclusive production of the charm-strange baryon $\Omega^{0}_{\rm c}$ is measured for the first time via its semileptonic decay into $\Omega^{-}\rm e^{+}\nu_{e}$ at midrapidity ($|y| < ~0.8$) in proton$-$proton (pp) collisions at the centre-of-mass energy $\sqrt{s}=13$ TeV with the ALICE detector at the LHC. The transverse momentum ($p_{\rm T}$) differential cross section multiplied by the branching ratio is presented in the interval $2 < ~p_{\rm T} < ~12~{\rm GeV}/c$. The branching-fraction ratio ${\rm BR}(\Omega^0_{\rm c} \rightarrow \Omega^{-}{\rm e}^{+}\nu_{\rm e})/ {\rm BR}(\Omega^0_{\rm c} \rightarrow \Omega^{-}{\pi}^{+})$ is measured to be 1.12 $\pm$ 0.22 (stat.) $\pm$ 0.27 (syst.). Comparisons with other experimental measurements, as well as with theoretical calculations, are presented.
Exclusive four pion photoproduction in ultraperipheral Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV The intense photon fluxes from relativistic nuclei provide an opportunity to study photonuclear interactions in ultraperipheral collisions. The measurement of coherently photoproduced $\pi^+\pi^-\pi^+\pi^-$ final states in ultraperipheral Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV is presented for the first time. The cross section, d$\sigma$/d$y$, times the branching ratio ($\rho\rightarrow \pi^+ \pi^+ \pi^- \pi^-$) is found to be $47.8\pm2.3~\rm{(stat.)}\pm7.7~\rm{(syst.)}$ mb in the rapidity interval $|y| < ~ 0.5$. The invariant mass distribution is not well described with a single Breit-Wigner resonance. The production of two interfering resonances, $\rho(1450)$ and $\rho(1700)$, provides a good description of the data. The values of the masses ($m$) and widths ($\Gamma$) of the resonances extracted from the fit are $m_{1}=1385\pm14~\rm{(stat.)}\pm3~\rm{(syst.)}$ MeV/$c^2$, $\Gamma_{1}=431\pm36~\rm{(stat.)}\pm82~\rm{(syst.)}$ MeV/$c^2$, $m_{2}=1663\pm13~\rm{(stat.)}\pm22~\rm{(syst.)}$ MeV/$c^2$ and $\Gamma_{2}=357 \pm31~\rm{(stat.)}\pm49~\rm{(syst.)}$ MeV/$c^2$, respectively. The measured cross sections times the branching ratios are compared to recent theoretical predictions.
Systematic study of flow vector decorrelation in $\mathbf{\sqrt{\textit{s}_{_{\bf NN}}}=5.02}$ TeV Pb-Pb collisionsMeasurements of the $p_{\rm T}$-dependent flow vector fluctuations in Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}} = 5.02~\mathrm{TeV}$ using azimuthal correlations with the ALICE experiment at the LHC are presented. A four-particle correlation approach [1] is used to quantify the effects of flow angle and magnitude fluctuations separately. This paper extends previous studies to additional centrality intervals and provides measurements of the $p_{\rm T}$-dependent flow vector fluctuations at $\sqrt{s_{_{\rm NN}}} = 5.02~\mathrm{TeV}$ with two-particle correlations. Significant $p_{\rm T}$-dependent fluctuations of the $\vec{V}_{2}$ flow vector in Pb-Pb collisions are found across different centrality ranges, with the largest fluctuations of up to $\sim$15% being present in the 5% most central collisions. In parallel, no evidence of significant $p_{\rm T}$-dependent fluctuations of $\vec{V}_{3}$ or $\vec{V}_{4}$ is found. Additionally, evidence of flow angle and magnitude fluctuations is observed with more than $5\sigma$ significance in central collisions. These observations in Pb-Pb collisions indicate where the classical picture of hydrodynamic modeling with a common symmetry plane breaks down. This has implications for hard probes at high $p_{\rm T}$, which might be biased by $p_{\rm T}$-dependent flow angle fluctuations of at least 23% in central collisions. Given the presented results, existing theoretical models should be re-examined to improve our understanding of initial conditions, quark--gluon plasma (QGP) properties, and the dynamic evolution of the created system.
Measurement of beauty-quark production in pp collisions at $\sqrt{s}=13$ TeV via non-prompt D mesons The $p_{\rm T}$-differential production cross sections of non-prompt ${\rm D^0}$, ${\rm D^+}$, and ${\rm D_s^+}$ mesons originating from beauty-hadron decays are measured in proton$-$proton collisions at a centre-of-mass energy $\sqrt{s}$ of 13 TeV. The measurements are performed at midrapidity, $|y| < ~ 0.5$, with the data sample collected by ALICE from 2016 to 2018. The results are in agreement with predictions from several perturbative QCD calculations. The fragmentation fraction of beauty quarks to strange mesons divided by the one to non-strange mesons, $f_{\rm{s}}/(f_{\rm{u}} + f_{\rm{d}})$, is found to be $0.114 \pm 0.016~{\rm (stat.)} \pm 0.006~{\rm (syst.)} \pm 0.003~{\rm (BR)} \pm 0.003~{\rm (extrap.)}$. This value is compatible with previous measurements at lower centre-of-mass energies and in different collision systems in agreement with the assumption of universality of fragmentation functions. In addition, the dependence of the non-prompt D meson production on the centre-of-mass energy is investigated by comparing the results obtained at $\sqrt{s} = 5.02$ and 13 TeV, showing a hardening of the non-prompt D-meson $p_{\rm T}$-differential production cross section at higher $\sqrt{s}$. Finally, the ${\rm b\overline{b}}$ production cross section per unit of rapidity at midrapidity is calculated from the non-prompt ${\rm D^0}$, ${\rm D^+}$, ${\rm D_s^+}$, and $\Lambda_{\rm c}^+$ hadron measurements, obtaining ${\rm d}\sigma/{\rm d}y = 75.2\pm 3.2~(\mathrm{stat.}) \pm 5.2~(\mathrm{syst.})^{+12.3}_{-3.2} ~(\mathrm{extrap.})\text{ } \rm \mu b \;.$
Studying the interaction between charm and light-flavor mesons The two-particle momentum correlation functions between charm mesons ($\mathrm{D^{*\pm}}$ and $\mathrm{D}^\pm$) and charged light-flavor mesons ($\pi^{\pm}$ and K$^{\pm}$) in all charge-combinations are measured for the first time by the ALICE Collaboration in high-multiplicity proton-proton collisions at a center-of-mass energy of $\sqrt{s} =13$ TeV. For $\mathrm{DK}$ and $\mathrm{D^*K}$ pairs, the experimental results are in agreement with theoretical predictions of the residual strong interaction based on quantum chromodynamics calculations on the lattice and chiral effective field theory. In the case of $\mathrm{D}\pi$ and $\mathrm{D^*}\pi$ pairs, tension between the calculations including strong interactions and the measurement is observed. For all particle pairs, the data can be adequately described by Coulomb interaction only, indicating a shallow interaction between charm and light-flavor mesons. Finally, the scattering lengths governing the residual strong interaction of the $\mathrm{D}\pi$ and $\mathrm{D^*}\pi$ systems are determined by fitting the experimental correlation functions with a model that employs a Gaussian potential. The extracted values are small and compatible with zero.
See all submissions...

Upcoming Conferences (Next Week)

Diversity and Inclusivity in ALICE

The ALICE Collaboration embraces and values the diversity of its team members and colleagues. We are committed to fostering an inclusive environment for all people regardless of their nationality/culture, profession, age/generation, family situation and gender, as well as individual differences such as but not limited to ethnic origin, sexual orientation, belief, disability, or opinions provided that they are consistent with the Organization’s values.