ALICE mission

ALICE is optimized to study the collisions of nuclei at the ultra-relativistic energies provided by the LHC. The aim is to study the physics of strongly interacting matter at the highest energy densities reached so far in the laboratory. In such conditions, an extreme phase of matter - called the quark-gluon plasma - is formed. Our universe is thought to have been in such a primordial state for the first few millionths of a second after the Big Bang, before quarks and gluons were bound together to form protons and neutrons. Recreating this primordial state of matter in the laboratory and understanding how it evolves will allow us to shed light on questions about how matter is organized and the mechanisms that confine quarks and gluons. For this purpose, we are carrying out a comprehensive study of the hadrons, electrons, muons, and photons produced in the collisions of heavy nuclei (208Pb). ALICE is also studying proton-proton and proton-nucleus collisions both as a comparison with nucleus-nucleus collisions and in their own right. In 2021, ALICE completed a significant upgrade of its detectors to further enhance its capabilities and continue its scientific journey at the LHC in Run 3 and 4, until the end of 2032. At the same time,  upgrade plans are being made for ALICE 3, the next-generation experiment for LHC Runs 5 and 6.

Recent highlights

 

Recent highlights

With new measurements of hadron–deuteron correlations, the ALICE collaboration explores the strong interaction of three-body systems at the LHC.: Read more

Latest ALICE Submissions

Medium-induced modification of groomed and ungroomed jet mass and angularities in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV The ALICE Collaboration presents a new suite of jet substructure measurements in Pb-Pb and pp collisions at a center-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} = 5.02$ TeV. These measurements provide access to the internal structure of jets via the momentum and angle of their constituents, probing how the quark-gluon plasma modifies jets, an effect known as jet quenching. Jet grooming additionally removes soft wide-angle radiation to enhance perturbative accuracy and reduce experimental uncertainties. We report the groomed and ungroomed jet mass $m_\mathrm{jet}$ and jet angularities $\lambda_\alpha^\kappa$ using $\kappa=1$ and $\alpha>0$. Charged-particle jets are reconstructed at midrapidity using the anti-$k_\mathrm{T}$ algorithm with resolution parameter $R = 0.2$. A narrowing of the jet mass and angularity distributions in Pb-Pb collisions with respect to pp is observed and is enhanced for groomed results, confirming modification of the jet core. By using consistent jet definitions and kinematic cuts between the mass and angularities for the first time, previous inconsistencies in the interpretation of quenching measurements are resolved, rectifying a hurdle for understanding how jet quenching arises from first principles and highlighting the importance of a well-controlled baseline. These results are compared with a variety of theoretical models of jet quenching, providing constraints on jet energy-loss mechanisms in the quark-gluon plasma.
2411.03106
First measurement of A = 4 (anti)hypernuclei at the LHCIn this Letter, the first evidence of the ${}^4_{\bar{\Lambda}}\overline{\mathrm{He}}$ antihypernucleus is presented, along with the first measurement at the LHC of the production of (anti)hypernuclei with mass number $A=4$, specifically (anti)${}^4_{\Lambda}\mathrm{H}$ and (anti)${}^4_{\Lambda}\mathrm{He}$. In addition, the antiparticle-to-particle ratios for both hypernuclei (${}^4_{\bar{\Lambda}}\overline{\mathrm{H}}$ / ${}^4_{\Lambda}\mathrm{H}$ and ${}^4_{\bar{\Lambda}}\overline{\mathrm{He}}$ / ${}^4_{\Lambda}\mathrm{He}$) are shown, which are sensitive to the baryochemical potential of the strongly-interacting matter created in heavy-ion collisions. The results are obtained from a data sample of central Pb-Pb collisions, collected during the 2018 LHC data-taking at a center-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}} = $ 5.02 TeV. The yields measured for the average of the charge-conjugated states are found to be $[0.78 \; \pm \; 0.19 \; \mathrm{(stat.)} \; \pm \; 0.17 \; \mathrm{(syst.)}] \times 10^{-6}$ for the (anti)${}^4_{\Lambda}\mathrm{H}$ and $[1.08 \; \pm \; 0.34 \; \mathrm{(stat.)} \; \pm \; 0.20 \; \mathrm{(syst.)}] \times 10^{-6}$ for the (anti)${}^4_{\Lambda}\mathrm{He}$, and the measured antiparticle-to-particle ratios are in agreement with unity. The presence of (anti)${}^4_{\Lambda}\mathrm{H}$ and (anti)${}^4_{\Lambda}\mathrm{He}$ excited states is expected to strongly enhance the production yield of these hypernuclei. The yield values exhibit a combined deviation of 3.3$\sigma$ from the theoretical ground-state-only expectation, while the inclusion of the excited states in the calculations leads to an agreement within 0.6$\sigma$ with the present measurements. Additionally, the measured (anti)${}^4_{\Lambda}\mathrm{H}$ and (anti)${}^4_{\Lambda}\mathrm{He}$ masses are compatible with the world-average values within the uncertainties.
2410.17769
Multimuons in cosmic-ray events as seen in ALICE at the LHC ALICE is a large experiment at the CERN Large Hadron Collider. Located 52 meters underground, its detectors are suitable to measure muons produced by cosmic-ray interactions in the atmosphere. In this paper, the studies of the cosmic muons registered by ALICE during Run 2 (2015--2018) are described. The analysis is limited to multimuon events defined as events with more than four detected muons ($N_\mu>4$) and in the zenith angle range $0^{\circ} < ~\theta < ~50^{\circ}$. The results are compared with Monte Carlo simulations using three of the main hadronic interaction models describing the air shower development in the atmosphere: QGSJET-II-04, EPOS-LHC, and SIBYLL 2.3. The interval of the primary cosmic-ray energy involved in the measured muon multiplicity distribution is about $ 4 \times 10^{15} < ~E_\mathrm{prim} < ~ 6 \times 10^{16}$~eV. In this interval none of the three models is able to describe precisely the trend of the composition of cosmic rays as the energy increases. However, QGSJET is found to be the only model capable of reproducing reasonably well the muon multiplicity distribution, assuming a heavy composition of the primary cosmic rays over the whole energy range, while SIBYLL and EPOS-LHC underpredict the number of muons in a large interval of multiplicity by more than $20\%$ and $30\%$, respectively. The rate of high muon multiplicity events ($N_\mu>100$) obtained with QGSJET and SIBYLL is compatible with the data, while EPOS-LHC produces a significantly lower rate ($55\%$ of the measured rate). For both QGSJET and SIBYLL, the rate is close to the data when the composition is assumed to be dominated by heavy elements, an outcome compatible with the average energy $E_\mathrm{prim} \sim 10^{17}$~eV of these events. This result places significant constraints on more exotic production mechanisms.
2410.17771
Exposing the parton-hadron transition within jets with energy-energy correlators in pp collisions at $\sqrt{\textit s}=5.02$ TeV This paper presents a fully-corrected measurement of the energy-energy correlator (EEC) within jets in pp collisions. The EEC traces the energy flow as a highly energetic parton undergoes a QCD shower followed by the confinement of partons into hadrons, probing the correlation function of the energy flow inside jets. The EEC observable is measured as a function of the charged particle pair angular distance, $R_{\rm L}$, for $20 < ~ p_{\rm T}^{\rm ch \, jet} < ~ 80$ GeV/$c$. In the perturbative region (large $R_{\rm L}$), a good agreement between the data and a next-to-leading-log perturbative QCD calculation is observed. In the non-perturbative region (small $R_{\rm L}$), the data exhibits a linear $R_{\rm L}$ dependence. There is a transition region in between, characterized by a turnover in the EEC distribution, corresponding to the confinement process. The peak of this transition region is located at $2.39 \pm 0.17$ GeV/$c/\langle p_{\rm T}^{\rm ch \, jet}\rangle$ for jets of various energies, indicating a common energy scale for the hadronization process. State-of-the-art Monte Carlo event generators are compared with the measurements, and can be used to constrain the parton shower and hadronization mechanisms.
2409.12687
Measurement of the inclusive isolated-photon production cross section in pp and Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV The ALICE Collaboration at the CERN LHC has measured the inclusive production cross section of isolated photons at midrapidity as a function of the photon transverse momentum ($p_{\rm T}^{\gamma}$), in Pb-Pb collisions in different centrality intervals, and in pp collisions, at centre-of-momentum energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV. The photon transverse momentum range is between 10-14 and 40-140 GeV/$c$, depending on the collision system and on the Pb-Pb centrality class. The result extends to lower $p_{\rm T}^{\gamma}$ than previously published results by the ATLAS and CMS experiments at the same collision energy. The covered pseudorapidity range is $|\eta^{\gamma}| < ~0.67$. The isolation selection is based on a charged particle isolation momentum threshold $p_{\rm T}^{\rm iso,~ch} = 1.5$ GeV/$c$ within a cone of radii $R=0.2$ and $0.4$. The nuclear modification factor is calculated and found to be consistent with unity in all centrality classes, and also consistent with the HG-PYTHIA model, which describes the event selection and geometry biases that affect the centrality determination in peripheral Pb-Pb collisions. The measurement is compared to next-to-leading order perturbative QCD calculations and to the measurements of isolated photons and Z$^0$ bosons from the CMS experiment, which are all found to be in agreement.
2409.12641
See all submissions...

Upcoming Conferences (Next Week)

Diversity and Inclusivity in ALICE

The ALICE Collaboration embraces and values the diversity of its team members and colleagues. We are committed to fostering an inclusive environment for all people regardless of their nationality/culture, profession, age/generation, family situation and gender, as well as individual differences such as but not limited to ethnic origin, sexual orientation, belief, disability, or opinions provided that they are consistent with the Organization’s values.